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Abstract 

A density-modification procedure for phase extension 
and refinement is described which replaces all density 
less than one-fifth of the height of a light-atom peak 
by zero. Its effectiveness is demonstrated by applica- 
tions to a small and a medium-size protein structure. 
With high-resolution data, for the small protein, it is 
possible to extend and refine from 3 to 1 A with a 
mean phase error less than 30 ° . Successful phase 
extension from 4/~ is also possible. In general it is 
shown that phase extension to high resolution gives 
less error than extension to lower resolution. It has 
also been shown that for a small protein it is possible 
to obtain an ab initio solution of the structure by 
refining from a complete set of random phases for 
all reflexions. 

The basis of direct methods 

Most direct methods consist of mathematical pro- 
cedures carried out in reciprocal space which are 
designed to produce sets of phases satisfying par- 
ticular constraints. The first powerful and generally 
applicable direct methods were those based on the 
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tangent formula, introduced by Karle & Hauptman 
(1956), 

tan ~0(h) 

= {~ [E (k )E(h -k ) ]  sin [~o(k) + ~o(h- k)]} 

I } -1 
× ~ IE(k)E(h--  k)l cos [~(k) + ~ ( h -  k)] 

(1) 
Although the tangent formula was derived by Karle 

& Hauptman from algebraic and statistical consider- 
ations, it can be given a real-space physical interpreta- 
tion. The phase given by the tangent formula is just 
that which would be obtained if an E map, calculated 
with current phase estimates, was squared and the 
phase, ~0(h), of the Fourier coefficient of index h of 
the squared map was taken. 

The precursor of the tangent formula, the three- 
phase relationship 

~ ( h ) -  ~o(k)-~o(h-k) ~-0 (modulo 27r) (2) 

was derived by Cochran (1955) from the condition 
that a set of correct phases should give an electron 
density map for which ~v p3 d V is a maximum. This 
condition, somewhat intuitive in origin, expresses the 
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452 PHASE EXTENSION AND PHASE DETERMINATION.  I 

idea that the electron density will be everywhere 
positive and also be concentrated around atomic 
centres. 

To strengthen the tangent formula, higher-order 
phase relationships, notably quartets (Schenk~ 1973; 
Hauptman, 1977), have sometimes been employed. 
In the simplest form, a quartet relationship involving 
the phases of four Es of large magnitude is 

~p(h) - q~(k) - ~p(l) - ~p(h - k - !) ~- 0 (modulo 2¢r) 

(3) 

and may be thought of as expressing the condition 
that ~v p4 d V is a maximum. However, the even power 
of p in the integral does not discriminate against 
negative p, and quartets are best considered from a 
statistical point of view. In fact, Schenk (1973) and 
Hauptman (1977) showed that if the 'cross terms', 
E ( h - k ) ,  E ( k - i )  and E ( l -  h), are all small in magni- 
tude then 

~p(h) - ~p(k) - ¢(!) - ~p(h- k -  1) =- ¢r (modulo 2¢r), 

(4) 

which is difficult to interpret in terms of E-map 
density. 

A recent addition to direct-methods phasing for- 
mulae is the Sayre-equation tangent formula (Debaer- 
demaeker, Tate & Woolfson, 1985, 1988). This for- 
mula contains both three-phase and quartet derived 
terms but is chosen so that the derived phases tend 
to satisfy Sayre's equation 

E(h) = 0(h) Y. E ( k ) E ( h -  k) (5) 
k 

(Sayre, 1952), where 0(h) is known. This equation 
expresses the condition that if the E-map density 
shows equal resolved atoms then the squared density 
will show equal and resolved 'squared'  atoms. In fact, 
it has been shown by Shiono & Woolfson (1991) that 
Sayre's equation holds remarkably well in many situ- 
ations when the atoms are unresolved and unequal. 

A final example of a very mathematical approach 
with a real-space condition attached to it is the use 
of Karle-Hauptman determinant inequalities (Karle 
& Hauptman, 1950). These are of the form 

E ( 0 )  E ( h , )  E(h2)  .-. E ( h , )  

E(K~) E ( 0 )  E ( h 2 -  h,)  . . .  E(h, ,  - h,)  

E ( h  2) E ( h l - h 2 )  E ( 0 )  . . .  E ( h , , - h 2 )  
. . . ... • 

E(h , , )  E ( h , - h , , )  E ( h 2 - h , )  . . .  E ( 0 )  

~-o (6) 

and they express the condition that electron density 
(or E-map density for an infinite data set) should be 
non-negative (Toeplitz, 1911). 

The existing practice is that phase extension and 
refinement, particularly for proteins, are carried out 
either by real-space methods - for example, Wang's 
solvent flattening method (Wang, 1985) - or by 

reciprocal-space methods - for example, by applying 
the maximum determinant rule (Tsoucaris, 1970). On 
the other hand, phase determination by direct 
methods is done almost exclusively in reciprocal 
space by applying relationships between phases. 

Although many direct-methods procedures could 
be translated into real-space processes, reciprocal- 
space operations have the advantage that they are 
more economical in computer time as long as one is 
interested in phasing only a subset of Es of largest 
magnitude. For example, in a typical direct-methods 
solution of a small structure, it is adequate to find 
phases for, say, 300 reflexions and these may be linked 
by 5000 three-phase relationships. However, ex- 
perience indicates that if large structures, e.g. pro- 
teins, are to be tackled using direct methods then a 
large proportion of the data, ideally all the data, must 
be deployed. The number of three-phase relationships 
increases approximately as the square of the number 
of refiexions but the real-space operation of calculat- 
ing a Fourier transform, using the standard fast Four- 
ier transform (FFT) algorithm, depends, to first order, 
directly on the number of coefficients. Since we 
are interested in developing methods for solving 
macromolecular structures by directly determining 
phases, we have recently been turning our attention 
to real-space procedures and we report here our first 
experiences in this direction. 

The low-density modification procedure 

The basic program we set up to examine direct-space 
methods consisted of three components: 

(1) calculate electron density from structure fac- 
tors (including phase) with a FFT routine; 

(2) modify density; 
(3) calculate structure factors from the modified 

density using the FFT routine. 
It was our expectation that we would be looking 

at some quite complex density modifications in which 
we would be forcing the density towards some ideal- 
ized configuration. In the event, the first very simple 
density modification we tried was so effective that we 
have concentrated on exploring its properties and 
limitations. We shall be presenting the procedures we 
have found by trial and error to be most useful; we 
cannot completely justify them or the parameters we 
use by any formal theoretical reasoning. 

The density modification we have used is low- 
density elimination (LDE). This consists of replacing 
both negative and positive density that is less than a 
certain magnitude by zero. The practical details of 
this procedure are as follows. 

(i) Calculate the E map in sections, e.g. at intervals 
in y of approximately 1/(4kmax), which ensures that 
the sampling effectively and efficiently follows the 
variation of density. Similar grid intervals are used 
in the other principal directions. All reflexions of 
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known phase are used in the E-map calculation, 
including E(0). 

(ii) Find the average peak height, pc, of the light 
atoms. This is estimated by finding the average of the 
maximum density in each section. Thus if there are 
M sections and the maximum density in the j th 
section is p . . . .  j then 

If there are heavy atoms in the structure then their 
influence can be removed by eliminating any sectional 
maximum density appreciably higher than the 
average. 

(iii) Modify the E-map density by 

Pnew = P, P -> 0.2p. ; 

Pnew = 0, p < 0.2pc. 

(iv) Fourier transform the modified density to give 
Fourier coefficients 

~(h) = I~(h)l exp [ i~(h)] .  

(v) Calculate a weighted E map with coefficients 

w(h)lE(h)] exp [iCe(h)], 
where 

w(h)=tanh[Kl~(h)E(h)] /2]  (8) 

and K, a normalizing constant for the Q values of 
~(h) is calculated from 

If the LDE method is being used for phase extension 
from a small base of known phases then these are 
not changed until the final cycle of the procedure. 
The weighting scheme, which is similar to that derived 
by Sim (1960), was based on a function whose value 
goes from zero to one as the argument goes from zero 
to infinity with the values ~(h) and E(h) involved in 
a sensible way. The constant parts of the argument 
were chosen by trial and error but the behaviour of 
the phase extension and refinement procedure does 
not depend upon them too sensitively. 

(vi) Go to (ii) to begin the next cycle. 
All the trials we have made so far have been on 

known structures but using real observed data. To 
judge the effectiveness of the procedure, we have used 
mean phase errors, either unweighted or weighted in 
three different ways. These are: 

(A~) = 2 I~,(h)- ~(h)l/Q; (10) 
h 

(A~)EF 

(13) 

~0,(h) is the "true' phase calculated from the coordi- 
nates of the refined structure. 

Phase extension for a small protein 

We applied LDE to a small protein, avian pancreatic 
polypeptide (App) (GIover et al., 1983). The space 
group is C2 with dimensions a=34.18,  b=32.92, 
c=28.45 ~ and fl = 105.26 ° . The asymmetric unit 
contains 301 non-hydrogen atoms belonging to the 
protein, a zinc atom and 80 H20 molecules. The data 
are of good quality by protein crystallography stan- 
dards and extend to a resolution of 0.98 A. 

Our first experiments were in extending phases 
from 3 ~ to various resolutions. In the original solu- 
tion of this structure, phases were found out to 3 
resolution by a combination of one-wavelength 
anomalous scattering and single isomorphous 
replacement using data from a mercury derivative. 
The mean phase error for these low-resolution 
reflexions was less than 30 °. In our experiments, we 
introduced the phase errors artificially by the formula 

tan ~o(h) = [p  sin ~o,(h) + (1 - p )  sin ¢Pr(h)] 

x [ p c o s ~ o , ( h ) + ( 1 - p ) c o s C r ( h ) ]  -1, (14) 

where ~t(h) is the true phase and ~0r(h) is a random 
phase chosen from a distribution with uniform proba- 
bility in the range from 0 to 27r. If p - -0  then the 
phases ~0(h) are completely random; on the other 
hand i fp  = 1 then ~0(h) are the true phases. We chose 
a value ofp such that the initial low-resolution phases 
had a mean phase error of approximately 30 °. 

The advantage of using random phase errors calcu- 
lated in this way is that we could systematically 
explore the way in which the effectiveness of the 
method depended on the errors. In practice, real 
phase errors as derived from, say, multiple isomor- 
phous replacement are not truly random; there will 
be a tendency for the errors to be greater for the 
smaller structure factors and for those of higher reso- 
lution (Cannillo, Oberti & Ungaretti, 1983). For a 
given mean phase error of a set of reflexions, a MIR 
set will be better than the set we use because we 
would have greater error in the stronger reflexions - 
although the resolution effect will be in the other 
direction. 

Our process was divided into two distinct stages- 
phase extension followed by phase refinement. The 
initial decisions taken were that nl new phases would 
be estimated in the first cycle of phase extension and 
that the phase extension process would consist of L 
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Table 1. Phase extension and refinement from 3 and 4 ~ to the stated resolution for App 

The values in paren theses  in the co lumn ' Ini t ial  n u m b e r  o f  ref lexions '  are the unweighted  and  weighted mean  phase  errors in degrees  
for  the low-resolu t ion  start ing reflexions af ter  ref inement .  The  initial errors  for  these phases  are a p p r o x i m a t e l y  30 °. 

Resolut ion N u m b e r  o f  Initial Final 
f rom to ref inement  n u m b e r  of  n u m b e r  o f  (A~o) (A¢)EF 
(/~) (/~) cycles reflexions reflexions (°) (°) 

3.0 1.0 77 614 16 524 27.6 15.5 
(33.2; 18.7) 

1.25 178 (38.5; 22.8) 8 502 40.4 23.4 
1.50 191 (49.6; 31.3) 4 932 50.9 32.6 
1.75 90 (53.6; 34.5) 3 118 65.9 49.0 
2.00 63 (58.0; 37.9) 9 095 72.2 56.5 
2.25 47 (54.0; 35.8) 1 475 69.1 54.8 
2.50 23 (60.5; 35.5) 1 081 68.2 49.3 

4.0 1.0 144 253 16 524 30.8 18.0 
(39.6; 21.8) 

cycles. Then the number of estimated phases in cycle 
j is 

nj = nl~/j-I (15) 

where y is found from the total number of phases to 
be estimated by extension, next, by 

L 

nex,= Y~ n j=n , (yL- -1 ) / ( y - -1 ) .  (16) 
j = l  

For example, with n~ = 30, next = 15 910 and L = 12, 
the value of 7 is found to be 1.62162 and the numbers 
of phases in the extension process in successive cycles 
are 30, 49, 79, 128, 207, 336, 546, 885, 1435, 2326, 
3772, 6117. 

In extending phases cycle by cycle, estimates are 
accepted in order of the magnitude of w(h)[E(h)] 
where w(h) is given in (8). During the process of 
phase extension, phases are unchanged once they 
have been estimated and the magnitude of the corre- 
sponding Fourier coefficient is also unchanged in the 
subsequent maps; changes to the initially estimated 
phases are only made when the phase-refinement 
process is begun. 

Once an estimated phase is available for every 
reflexion in the extension set, cycles of phase 
refinement are set in train following the steps (ii) to 
(vi) previously described. The process is continued 
until the average change of phase in each of several 
successive cycles is less than some predetermined 
limit (say 0.1°); one more cycle is then gone through 
in which the original low-resolution phases are 
allowed to change. It is necessary to have stability 
for several cycles before terminating the refinement 
as the process has the characteristic that it sometimes 
pauses momentarily and then takes off again. 

The results of phase extension from 3 A for App 
are shown in Table 1. Two interesting conclusions 
can be drawn from this. The first is that extending to 
1/~, the limit of the data, gives a very low mean phase 
error; a map with these phases shows the structure 
clearly. The second point is that extension to low 
resolution is much less accurate than extension to 

high resolution; instinctively it might be thought that 
a modest extension from 3 to 2.5/~ should give 
very accurate phases since the extrapolation range is 
small, but instinct is wrong in this case. 

Finally, in Table 1 we show the result of phase 
extension from 4 to 1/~, a much greater range than 
is usually attempted. Once again, the final phase error 
is low and it will be clear that this process of phase 
extension is very robust. 

The influence of heavy atoms 

From previous experience in applying the Sayre- 
equation tangent formula to App for phase extension 
(Yao & Woolfson, 1988) and for ab initio solution 
(Woolfson & Yao, 1990), it was suspected that the 
Zn atom was having an important influence on the 
LDE phase extension. To test this we modified the 
normalized structure factors to correspond to those 
for a zinc-free (ZF) structure. This was done by the 
formula 

EzF(h) = E(h)-[fzn(h)2/o'2]l/2Ez,(h), (17) 

where Cr2----~jNI fj(h) 2, fj(h) is the scattering factor 
for the j th  atom, fzn(h) is the scattering factor for 
zinc and Ezn(h) is the normalized structure factor for 
zinc calculated from the known coordinates. By doing 
this calculation, we were able to eliminate the contri- 
bution of zinc while retaining the experimental error 
in the structure-factor magnitudes. The results of 
extending phases from 3/~ to 1.0, 1.25 and 1.5 A are 
shown in Table 2(a). The results are much inferior 
to those for the zinc-containing structure and the 
results are probably not useful for phase extension 
to less than 1.25 A resolution. 

Since many proteins contain S-S bridges, we also 
explored the effect of replacing Zn with S atoms. The 
results, shown in Table 2(b), are very little different 
from those without a heavy atom at all and sulfur 
seems to give no assistance in phase refinement. 

In fact, it turns out that if the positions of the Zn 
atoms are known and high-resolution data are avail- 
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Table 2. Phase extension and refinement for App 

( a )  App  with zinc cont r ibu t ion  r emoved  f rom 3 /~  (614 reflexions) to the stated resolut ions.  The  initial phase  errors  for the initial phases  
are a p p r o x i m a t e l y  30 °. (b)  As for  ( a )  except  that  the App  s t ructure  has sulfur  a toms subst i tu ted for  zinc. 

Resolut ion  N u m b e r  o f  Final errors  Final 
f rom to ref inement  in initial n u m b e r  of  (A~o) (A~0)eF 
(/~,) (A)  cycles reflexions reflexions (o) (o) 

(a) 
3.0 1.0 92 (33.4; 18.7) 16 524 42.4 26.3 

1.25 235 (46.1 ; 25.3) 8 502 54.2 33.5 
1.50 160 (54.2; 36.4) 4 932 72.3 57.0 

(b) 
3.0 1.25 200 (46.2; 26.1 ) 8 502 54.8 34.3 

1.50 148 (52.4; 35.7) 4 932 73.6 58.3 

Table 3. Results of refinement using initial phases from the zinc position 

Resolution Number of Initial Number of (d¢) (A~o)E ~- 
(A) reflexions (A~o)(°) cycles (o) (o) 
1.00 16 524 66.9 39 32.9 20.2 
1.25 8 502 64.2 80 62.0 45.1 
1.50 4 932 65.9 88 73.2 61.1 

able then the App structure can be solved from this 
information alone with the LDE technique. Starting 
phases are assigned from the zinc contributions to all 
reflexions and are then refined in the usual way. The 
results are shown in Table 3. With 1 A data, the final 
mean phase error is very low and it is clear that the 
structure has been solved by this process. For resol- 
utions 1.25 and 1.5 A, the results are very much 
inferior, although a weighted 1.25 ,~ map could pro- 
vide a starting point for a detailed solution. The 
phases after refinement for 1.5 ,~ are actually worse 
than those obtained from the zinc position alone. 

Application to a larger protein 

We next tried the LDE procedure on a larger test 
structure, ribonuclease Apl (RNApl)  (Polyakov, 
1991). This has space group P2~ with a--32.01, b = 
49.76, c = 30.67 A and /3 = 115.83 °. The asymmetric 
unit contains 808 non-H atoms, including five S 
atoms, and 83 water molecules. There are 23 853 
independent observed reflexions out to 1.17 ~ reso- 
lution. 

Our goal here was to see how well initially poor 
phases could be refined. By the use of (14) we assigned 
phases to all reflexions with a 74 ° mean phase error. 
Experiences with the use of one-wavelength 
anomalous-scattering data (Fan, Hao & Woolfson, 
1990) indicate that for a structure the size of RNApl ,  
or even larger, a mean phase error of 70 °, or even 
less, is attainable- perhaps even with comparatively 
unfavourable anomalous scattering from sulfur. After 
293 cycles of refinement, the mean phase errors, 
unweighted and weighted, were: (A~) = 50.2, (A~)F = 
45.1, (A~)E = 39.7 and (A~)~F = 34.6 °. There is a con- 
siderable improvement in phases and also in the 
quality of the resultant maps. The other interesting 

point is that the weighted errors show that the 
reliabilities of the phase estimates are well indicated 
by the weighting schemes and this is reflected in the 
improved quality of maps when calculated with the 
normal weights as given by (8), as compared with 
maps using unweighted coefficients. 

During the investigation of refining RNApl we 
discovered a device for speeding up the refinement. 
Early experiments in which density was just squared 
showed that it usually gives markedly improved 
phases for a few cycles but after that it leads to a 
rapid deterioration of the phases. In the RNApl 
refinement, for the first three cycles, negative density 
was made equal to zero and then the modified density 
was squared. This accelerated the refinement without 
affecting its final outcome. 

Ab initio solution by the LDE method 

The default procedure on many presently used direct 
methods is to start a process of phase refinement from 
initially random phases. This has been done using 
the LDE process with the 1 ,~ data for App. Forty 
trials were made starting with different sets of random 
phases for all 16 524 reflexions. After 106 cycles of 
refinement, the sixth trial gave a set of phases with 
the unweighted and weighted mean errors: (A~0)= 
33.9, (A~)F = 28.0, (A~)E = 25.2 and (A~)~F = 20.7 °. 

The potential of the LDE method as a means of 
solving large, perhaps macromolecular, structures 
will be the subject of further study. 

Discussion 

It was a surprise to us that a density-modification 
process as simple as LDE could be so powerful as a 
phase-refining procedure. Part of the process, that 
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which eliminates the negativity of the map, can clearly 
be related to the physical condition that electron 
density cannot be negative and this is the basis of 
some reciprocal-space direct-methods procedures. A 
referee has also reminded us of a paper by Barrett & 
Zwick (1971) in which phase extension and 
refinement was carried out by a process of first remov- 
ing the negativity of a map and then squaring the 
modified map. On rereading this paper we find in it 
a reference to a private communication from G. 
Kartha, dated 1969, in which a method similar to that 
we describe here is mentioned as having been applied 
to some small-molecule structures; no further refer- 
ence to this approach can be found. 

The LDE procedure which replaces not only nega- 
tive density but also some positive density by zero 
cannot so easily be rationalized - although it might 
be related to the solvent flattening idea used by Wang 
(1985). It should be said that we investigated the level 
for elimination in the form cpc for various values of 
c. While small variation about c=0 .2  makes little 
difference, the values c = 0 and c = 0.4 are markedly 
inferior in performance to c = 0.2. The selection of a 
threshold for replacement by zero was also done by 
Cannillo, Oberti & Ungaretti (1983), who replaced 
everything above the threshold by a constant value. 
Their method worked reasonably well for ideal data 
with both magnitudes and phases calculated from 
refined structure coordinates but less well with real 
data. 

Another characteristic of the LDE method, which 
it has in common with more conventional direct 
methods, is that its effectiveness depends greatly on 
the resolution of the data being deployed; this is clear 
from the results displayed in Tables 1 and 2. We 
suspect that for low-resolution data it may be better 
to use Fs rather than Es, or at least Es modified to 
correspond to low-resolution atoms with little nega- 
tive diffraction ripple. Our experience also leads us 
to question the usual philosophy in phase extension 
which is to do it by degrees - first from 3 to 2.5 then 
to 2.2 ~ etc. The message that we obtain from our 
work is that all available data should be used from 
the very beginning. Data of the resolution that we 

have for App and RNApl  are the exception rather 
than the rule in protein crystallography and it must 
be emphasized that the good results here were highly 
dependent on the data resolution - as is evident from 
all the tables. One of our future aims is to find ways 
of improving the performance of density-modification 
methods at lower resolution. 

A final point is that the LDE method, which 
requires two Fourier transforms per cycle, is very 
expensive in computer time. At present, with super- 
computer capability becoming available at desk-top 
level, we feel that this is a matter of little importance; 
within reason we can expect computers to catch up 
with requirements within a very short timespan. 

We thank C. Tate, L. S. Refaat, Yao Jia-xing and 
Hao Quan for helpful discussions. We are also grate- 
ful to the Science and Engineering Research Council, 
the Wellcome Trust and the Wolfson Foundation for 
their support of direct-methods activity in York. 
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